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Abstract

The field of diagnostic decision support in radiology is undergoing rapid transformation with the availability of large amounts of patient
data and the development of new artificial intelligence methods of machine learning such as deep learning. They hold the promise of
providing imaging specialists with tools for improving the accuracy and efficiency of diagnosis and treatment. In this article, we will
describe the growth of this field for radiology and outline general trends highlighting progress in the field of diagnostic decision support
from the early days of rule-based expert systems to cognitive assistants of the modern era.
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INTRODUCTION
The field of artificial intelligence (AI) is making a strong
comeback literally in all its senses. From the sense of vision
with self-driving cars [1] to the sense of taste through
AI-generated recipes [2], many new applications are
emerging that expand the role of AI. This revolution has
largely been spurred by big data, that is, large amounts
of data now easily available in many fields either on the
web, collected by smart devices, or in the case of health
care, through large-scale health records becoming
electronically available. In health care, the role of AI is
particularly felt in nearly all fields, from drug discovery
where drug candidates are being found faster through the
use of machine learning techniques on big data [3] to
consumer health where wearable devices are collecting
large amounts of data to enable better monitoring and
prediction through use of machine learning techniques [4].

With medical imaging now being analyzed through AI
and deep learning techniques, the role of big data and
machine learning has taken on an added significance for
radiologists [5-7]. The largest impact of machine learning
on big data is being felt in the field of diagnostic decision
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support, which has been undergoing a dramatic
transformation since the early days of AI and rule-based
expert systems [42,43]. In this article, we will describe
the growth of this field for radiology and outline general
trends. Specifically, we describe the growth of the field
from rule-based expert systems, through computer-aided
diagnosis systems and big data-driven decision support
systems, to data and knowledge-driven systems in their
current form as cognitive assistants. We use specific ex-
amples from our own research in this field to illustrate the
evolved thinking in clinical decision support.
RULE-BASED EXPERT SYSTEMS—EARLY
APPLICATIONS
Early applications of AI in radiology were in rule-based
expert systems for decision support [8,9]. The rules would
form associations of specific conditions and symptoms
with relevant tests to order [10], with differential diagnosis
or recommended treatments including drugs [9]. The AI
technology used in these cases was rule-based inference
and reasoning using several knowledge representation
methods including semantic networks [11,12], which have
survived in the form of knowledge graphs in the unified
medical language system currently [13]. For diagnosis in
particular, these systems did not really scale because the
rules were either incomplete for a specialty or did not
completely apply to a patient to trigger in appropriate
systems. The most common use of clinical decision
www.manaraa.com
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support is in the form of alerts in the electronic medical
record system such as for drug dosage [14], based on a
priori defined rules and not necessarily customized for the
current patient. Later rule-based systems point to guide-
lines based on matches to a patient’s conditions [15,18].
The rules in these systems are derived from guidelines
composed by experts such as American College of
Cardiology guidelines [15] into conveniently organized
pages such as those in UptoDate (Wolters Kluwer,
Waltham, Massachusetts) [16], Medscape (WebMD,
New York) [17], StatDx (Elsevier, Philadelphia) [63],
DiagnosisPro [19], Dynamed (Ebsco Health Ipswich,
Massachusetts) [20], Pepid (Chicago, Illinois) [21],
among others. The knowledge offered through these
browser-based technologies is primarily meant for visual
examination by specialists. The mapping of a patient’s
condition to these guidelines is provided through simple
search techniques. Thus, most of the rule-based expert
systems for clinical decision support in use in clinical prac-
tice are based on fixed a priori developed rules and using
simple search or rule-based inference techniques to pull up
the relevant information for diagnosis, treatment, or
outcome with input provided to such systems in structured
textual or numeric data form.

COMPUTER-AIDED DIAGNOSIS SYSTEMS
The computer-aided diagnosis (CAD) systems were
developed as a specific field of AI that used input from
Fig 1. Illustration of computer-aided diagnosis (CAD) systems ov
based on rules and used semantic and qualitative features. The s
handcrafted features. The most recent CAD systems directly use
classification.
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images to reach conclusions about potential anomalies or
offer differential diagnosis [22-24]. They coupled data-
driven feature extraction methods from image processing,
computer vision, and medical image analysis with in-
ferences rules to reason about regions in images containing
potential anomalies. Most of these stopped short of giving
a diagnosis (computer aided diagnosis [CADx]) [25,26]
and instead simply point to potential anomalies and
allow semi-automatic calculation of measurements (com-
puter aided detection [CADe]) [22,27]. Due to the large
number of false-positives generated and because they do
not offer differential diagnosis, many of these systems are
therefore used as second readers in radiology to ensure that
an anomaly is not accidentally missed. Whether they are
CADe or CADx systems, rule-based inference principles of
AI are still employed, and the deduction is made on the
basis of a priori rules built into the system and applied to a
single patient’s data. More recent CAD systems use
machine learning to do a feature-based classification, and
still newer methods have used deep learning as well [27].
Figure 1 illustrates the evolution of CADe systems that
identified potential anomalies in a single patient’s data
based on image analysis, feature extraction, and
classification. Thus, although initial CAD systems were
rule-based, all the newer systems use some form of
machine learning to classify candidate regions as normal
or abnormal after sufficient training images are provided,
so that they are also now beginning to exploit big data.
www.manaraa.com
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DATA-DRIVEN PATIENT SIMILARITY CLINICAL
DECISION SUPPORT
With the advent of electronic health records, the field of
clinical decision support took a turn for the better
through the emergence of rule-free statistical machine
learning-driven systems such as Advanced Analytics for
Information Management (AALIM) [64,65], which
pioneered the concept of patient similarity. In these
systems, instead of a machine hypothesizing a diagnosis,
a set of differentials could easily be obtained by
leveraging big data in a large electronic health record
system of prediagnosed patients using collaborative
filtering. The key idea was to use statistical machine
learning and content-based searching to find clinically
similar patients in the database, using all available
multimodal clinical data about the current patient. Once
similar patients were identified, the prerecorded diag-
nosis, treatment, and outcome associated with these pa-
tients in electronic records could be statistically ranked to
give recommendations. Figure 2 illustrates this approach.
All patients were modeled as clinical feature vectors
derived from their input multimodal clinical data but
excluding the output prediction variables, which were
usually diagnosis, treatments, and outcomes. By
searching in the neighborhood of the given patient’s
feature vector, similar patients were found and ranked
Fig 2. Patient similarity guided decision support using collaborati
input variables and prediction variables desired such as diagnosis
input variables are used to obtain a ranked list of patients based
ranked list of the output variables can be made to result in a rule
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in a list [64,65]. By pooling the associated diagnosis,
treatments, and outcomes from similar patients using
collaborative filtering [69], clinical decision support
could be achieved. Thus, there were no built-in rules;
instead, the system dynamically discovered similar pa-
tients and pooled their diagnosis, treatments, and out-
comes to form a scalable clinical decision support system
leveraging the big data in electronic records.

The patient similarity function could be learned in
either supervised or unsupervised fashion. Supervised
learning refers to techniques in which the machine is
provided an output label or labels to associate with a set
of input variables. In unsupervised learning, the labels are
not known for given sets of input variables and the ma-
chine is expected to rely on the correlations found in the
input variables to infer a group or label. Several research
articles explored supervised or unsupervised machine
learning techniques for patient similarity, leading to many
advancements in extracting diagnostically relevant fea-
tures for finding similar patients [28,29]. In supervised
patient similarity, patients were rated similar to each
other by clinical experts, and their underlying clinical
data were used to learn the similarity function using
many techniques that generally fall under the class of
metric learning [28-30,40,41]. Several measures were
used ranging from information-theoretic measures [29]
www.manaraa.com
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, treatments, and outcomes. The feature vectors formed from
on various similarity measures. Using collaborative filtering, a
-free way of clinical decision support.
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to kernel-based nonlinear metric learning methods [30].
Similarity between patients was also learned in an
unsupervised fashion using content-based search and
retrieval techniques in which each clinical data item from
a given patient was used to search a database of prelabeled
clinical data of the same type, and their corresponding
patient information was used to obtain statistical distri-
butions. Our research group pioneered the unsupervised
patient similarity methods, with several methods ranging
from techniques that find similar patients based on
heart sounds [31] or electrocardiogram morphological
shapes [32] to Doppler spectra in echocardiograms for
diagnosis of valvular diseases [33].
MACHINE LEARNING FOR MEDICAL IMAGING
Many medical imaging decision support tasks can also be
solved by classifying the data set into one or more label
classes and use the confidence in the classified labels to
infer a differential diagnosis. With the many machine
learning techniques available, the medical imaging com-
munity has used a variety of methods ranging from
support vector machines [34], random forests [35], and
other ensemble learners [36,37]. In our own research,
we have used statistical machine learning techniques to
classify various fracture types in MSK imaging [38] and
for separating normal from abnormal left ventricles in
echocardiography [39], among other uses. Statistical
machine learning can be done in both supervised and
unsupervised fashion and has varying requirements for
data labeling. However, in both forms of conventional
machine learning, the medical imaging community is a
user of these tools and has focused on crafting of
clinically relevant features such as features highlighting
the bones for viewpoint classification [66] or deviations
from a prolate spheroidal shape to describe left
ventricular dysfunction [39]. Most of the extensions to
machine learning algorithms for dealing with medical
imaging data sets also dealt with incomplete and
inaccurate labeling issues as well [44].

Development of custom diagnostically relevant
features, however, meant that a close relationship had to
be established between data scientists and clinicians who
guided the choice of features. Although this approach may
work for a small number of diseases, developing thousands
of such feature extractors and determining which are
applicable for a given imaging study would not scale for a
broad approach to clinical decision support. With the
advent of deep learning techniques, a potential solution to
this problem emerged. The basic deep learning network
572
for medical imaging data typically has two parts: (1) a
feature extractor that extracts possible features from the
raw images and (2) an objective function that learns
the correlation between the features and their labels
[45-47,60]. Instead of choosing features a priori, a set of
training images and their target labels are provided to a
deep learning network. The feature extractor portion
usually consists of several layers on nonlinear processing
units and transformation functions besides using
conventional image processing operators such as filters.
For example, many popular networks such as
convolutional neural networks [48] or their many
adaptations such as U-net [49], V-net [50], and M-net
[51] use a set of convolutional filters applied to an image
at multiple possible positions with multiple window
sizes to span object structures of different shapes and
sizes. Thus rather than choosing a fixed set of feature
detectors, these networks use a generate-and-test para-
digm to use a variety of filters at all possible scale and
resolution, and they let the learner (the objective function)
judge how good any of these features are for label
discrimination and learning. Many different objective
functions are possible such as linear regression, logistic
regression, KL-divergence, 0/1 loss function, ambiguous
loss function, among others, although recent working in
deep learning is also learning the objective function itself!
The correlation between the labels and the input feature
vectors is learned via the objective function using artificial
neural networks with hidden layers. The labels themselves
can be discrete as needed for classification or in the form of
region annotations. If all regions of a medical imaging
study are annotated, it can be used to learn an anatomical
atlas for the area of the body depicted in study. If the re-
gions marked are anomaly regions, they can be used for
anomaly segmentation. Thus deep learning networks have
become a popular approach to decision support by
enabling classification, segmentation, and anomaly detection
using a uniform paradigm of multilayer neural networks
for feature extraction and correlation.

The ability of all such networks to learn patterns is a
function of number of labeled data sets, the number of
convolutional layers to build feature abstractions, and
choice of optimization functions. Most deep learning
researchers primarily tune these parameters to reach
satisfactory convergence of networks. Thus big data is
driving the training of such networks and is bringing
about a fundamental change in clinical decision support.

In the field of radiology imaging, deep learning is
rapidly becoming pervasive as a topic in most medical
imaging conferences including RSNA, Medical Image
www.manaraa.com
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Computing and Computer-Assisted Interaction, and
Society for Imaging Informatics (SIIM). Furthermore,
more than 100 startups as well as big companies have
embraced the field of deep learning for use for medical
image interpretation [5-7]. Many of them attempt
constrained problems such as classification of a lesion
identified by a radiologist into BI-RADS category [52] or
calculation of measurements by completing lesion
boundaries by semiautomatic localization process.
Recently, the FDA has approved for commercial use
systems such as a heart failure estimator, which calculates
key performance indicators for the disease through stable
segmentation of the short-axis-view cardiac MRI for
myocardium [6]. The predominant problems being solved
using these techniques range from classification and
segmentation to anomaly detection and characterization.
Automatic disease detection in many anatomical
structures is now possible, ranging from valvular disease
detection in echocardiogram [53] to lung nodule
classification in chest CTs [54].

COGNITIVE ASSISTANTS LEVERAGING BIG
DATA AND KNOWLEDGE IN AI
With recent work reporting higher than clinician-grade
accuracy in reading imaging in limited specialties
(dermatology [55], ophthalmology [56]), radiologists are
beginning to wonder whether machine learning, AI,
and its use of big data will lead one day to machines
replacing radiologists. Although the field will continue
Fig 3. Illustration of a systematic modeling of the radiologist’s di
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to advance, replacement of radiologists is a much
farther proposition when considered generally across the
field where a large number of variations of modalities,
modes, viewpoints, anatomy variations, and disease
manifestations need to be considered. Instead, a new
generation of machines is attempting to assist
radiologists rather than replace them by augmenting
their decision making by pre-analyzing the data and of-
fering recommendations. Such machines that work hand
in hand with radiologists and cardiologists are called
cognitive assistants. Recent results have shown that such
machines have a greater chance of being adopted by cli-
nicians in their clinical workflow than those that attempt
to replace the specialists altogether.

Cognitive assistants are driven not only by machine
learning of large amounts of patient data but also by clinical
knowledge. This new type of clinical decision support
machines is being pioneered in our research group. We
approach the diagnostic decision support problem through
a systematic modeling of the radiologist’s diagnosis process.
The aim is to solve the problem in an end-to-end fashion by
answering a series of questions about an incoming imaging
study. As shown in Figure 3, we first analyze the imaging
study to infer the modality, mode, and viewpoint. Using
knowledge of the anatomy through atlases, we next
understand the position in the body and recognize
known anatomical structures using a variety of
approaches including the multi-atlas label fusion algo-
rithms described elsewhere [57]. Finally, we look for
www.manaraa.com
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anomalies in selected anatomical regions based on
deviations from their normal appearance [58]. To enable
each of these operations, machines are trained on large
clinician-annotated data sets with machine learning tech-
niques ranging from variants of support vector machines
[34], random forests [35], to deep learning networks [59].
Once the anomalous regions are detected, cognitive
assistants examine other sources of clinical data,
particularly textual data to find additional information as
clinical features [53]. All the assembled clinical facts from
the patient are then used to reason against a large
knowledge base of clinical facts and relationships that
have already been weighted by patient data statistics from
electronic health record analysis. Both declarative
knowledge and procedural knowledge are used to arrive
at new conclusions regarding recommendations for
diagnosis, treatment including next best test, and
prediction of outcomes associated with the findings. This
multimodal reasoning with clinical knowledge that
inherently incorporates learned distributions from big
patient data records makes for a powerful inference
engine for clinical decision support in a cognitive assistant
machine. A system exhibiting such a cognitive assistant
was recently demonstrated at the RSNA conference in
2016 under the exhibit “Eyes of Watson” [67].
WHAT ARE SOME CHALLENGING PROBLEMS
IN THIS FIELD?
Despite the rapid advances in deep learning and reasoning
techniques in cognitive assistants, the biggest challenge in
this field remains in obtaining sufficiently large number
of accurate labels for imaging studies and their anomalous
regions by clinical experts. Web-based annotation tools
deployed in the cloud using a crowd-sourcing model for
clinician annotations are now beginning to emerge [68],
but rolling such efforts out on a massive scale is still a
challenge. The field needs rapid development of semi-
automatic ground truth labeling methods in which the
machine iteratively learns the patterns through increas-
ingly smaller number of annotations supplied by clini-
cians using active learning paradigms.

Advances are also needed in deep learning network
research. Although deep learning can potentially learn the
features automatically through the corrective learning pro-
cess, researchers are beginning to question the need for such
networks with a large number of layers that take a long time
to converge. If clinically meaningful features are known a
priori for a particular domain, it seems reasonable to exploit
such knowledge to bias the deep learners. Learning from
574
partially, inaccurately, or ambiguously labeled data also
remains an active research problem in the community.

As the cognitive aspects of learning come to the
fore, deep learning techniques begin to incorporate a
priori clinical knowledge into the learning process
instead of applying it later through reasoning algo-
rithms. These higher-layer semantic deep learning net-
works have also been pointed out by established
researchers such as Yan Le Cun in his recent NIPS
presentation in 2015 [71].

Finally, researchers are beginning to question the
current approach of building deep learning networks task
by task and are considering giant deep learning networks
that simultaneously solve the problem of anomaly
detection, anatomy segmentation, viewpoint recognition,
and so on, all in one network.

As researchers continue to address the technical chal-
lenges in developing robust techniques of utilizing big data
in medical imaging, commercial applications of these
technologies are already beginning to emerge in a variety of
use cases where machines can be in an assistive capacity.
Examples include work list prioritization for brain bleed
cases [61], comparison with prior examinations and
recording deviations [62], discrepancy detection in patient
records [62], and semi-automatic report generation [70].
Seamless integration of these technologies into clinical
workflow, however, remains a challenging problem.
CONCLUSIONS
Diagnostic clinical decision support in radiology is un-
dergoing rapid changes with big data and machine
learning helping the transformation. In this article, we
have emphasized three key ingredients for achieving
meaningful clinical decision support, namely (1)
modeling the radiologist’s diagnostic process and solving
key imaging recognition problems systematically through
deep learning, (2) incorporation of clinical knowledge,
and (3) combination of imaging and clinical data with
clinical knowledge to enable integrated clinical inference
and reasoning.

Although there are still quite a few challenges to pro-
ducing practical systems that cover a wide variety of dis-
eases, the technologies are rapidly maturing. Cognitive
assistant machines that are the latest in a series of clinical
decision support systems offer a new role formachines in an
assistive capacity to radiologists and cardiologists working
hand in hand with them to expedite their work. With such
advances, days are not far where we will see active use of
cognitive clinical assistants in daily clinical workflows.
www.manaraa.com
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TAKE-HOME POINTS
- The field of diagnostic decision support in radiology
is undergoing rapid transformation due to the
development of new machine learning algorithms
based on deep learning that provide cognitive
assistance.

- Major developments in this field happened along
five phases, namely (1) rule-based expert systems,
(2) computer-aided diagnosis systems, (3) patient
similarity systems, (4) deep learning-based systems,
and (5) cognitive assistant systems.

- There are three key ingredients for achieving
meaningful clinical decision support, namely (1)
modeling the radiologists diagnostic process and
solving key imaging recognition problems system-
atically through deep learning, (2) incorporation of
clinical knowledge, and (3) combination of imaging
and clinical data with clinical knowledge to enable
integrated clinical inference and reasoning.

- Cognitive assistant machines offer a new role for
machines in an assistive capacity to radiologists and
cardiologists working hand in hand with them to
expedite their work.

- Rolling out meaningful decision support systems
that fit into clinical workflows is still a challenge
both due to algorithmic enhancements needed and
FDA regulatory considerations.
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